Prolactin potentiates insulin-stimulated leptin expression and release from differentiated brown adipocytes.
نویسندگان
چکیده
The pituitary hormone prolactin (PRL) exerts pleiotropic effects, which are mediated by a membrane receptor (PRLR) present in numerous cell types including adipocytes. Brown adipose tissue (BAT) expresses uncoupling proteins (UCPs), involved in thermogenesis, but also secretes leptin, a key hormone involved in the control of body weight. To investigate PRL effects on BAT, we used the T37i brown adipose cell line, and demonstrated that PRLRs are expressed as a function of cell differentiation. Addition of PRL leads to activation of the JAK/STAT and MAP kinase signaling pathways, demonstrating that PRLRs are functional in these cells. Basal and catecholamine-induced UCP1 expression were not affected by PRL. However, PRL combined with insulin significantly increases leptin expression and release, indicating that PRL potentiates the stimulatory effect of insulin as revealed by the recruitment of insulin receptor substrates and the activation of phosphatidylinositol 3-kinase. To explore the in vivo physiological relevance of PRL action in BAT, we showed that leptin content was significantly increased in BAT of PRLR-null mice compared with wild-type mice, highlighting the involvement of PRL in the leptin secretion process. This study provides the first evidence for a functional link between PRL and energy balance via a cross-talk between insulin and PRL signaling pathways in brown adipocytes.
منابع مشابه
Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes.
Leptin, the ob gene product, is produced by adipose tissue and is submitted to a complex hormonal and metabolic regulation. Leptin plays a critical role in the balance of body weight. Here we report on secretion and hormonal regulation of leptin by brown adipocytes. Using the recently established T37i cell line, we show that leptin expression and secretion occurred as a function of cell differe...
متن کاملEffects of dopamine on leptin release and leptin gene (OB) expression in adipocytes from obese and hypertensive patients
BACKGROUND A reduction of dopaminergic (DAergic) activity with increased prolactin levels has been found in obese and hypertensive patients, suggesting its involvement as a pathophysiological mechanism promoting hypertension. Similarly, leptin action increasing sympathetic activity has been proposed to be involved in mechanisms of hypertension. The aim of this study was to analyze the effects o...
متن کاملDifferentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis
Adipose tissue (AT) hypoxia occurs in obese humans and mice. Acute hypoxia in adipocytes causes dysregulation of adipokine secretion with an increase in inflammatory factors and diminished adiponectin release. O2 levels in humans range between 3 and 11% revealing that conventional in vitro culturing at ambient air and acute hypoxia treatment (1% O2) are performed under non-physiological conditi...
متن کاملRole of adenosine in insulin-stimulated release of leptin from isolated white adipocytes of Wistar rats.
Leptin, the ob gene product that can decrease caloric intake and increase energy expenditure, is functionally released by insulin from adipose tissue. Adenosine is thought to be an important regulator of the action of insulin in adipose tissue. The present study investigated the role of adenosine in the release of leptin by insulin in isolated rat white adipocytes. Release of leptin, measured b...
متن کاملLeptin-mediated inhibition of the insulin-stimulated increase in fatty acid uptake in differentiated 3T3-L1 adipocytes.
The effects of insulin and leptin on fatty acid uptake in differentiated (adipocytes) and undifferentiated 3T3-L1 cells were investigated. It was demonstrated that in undifferentiated 3T3-L1 cells, insulin and leptin have no effect on fatty acid uptake. In differentiated 3T3-L1 adipocytes, insulin had a concentration-dependent stimulatory effect on fatty acid uptake, whereas leptin on its own h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of molecular endocrinology
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2004